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Geotechnical Design Method Quantifying Risk—Probability of Success Analyses—Engineer’s Version 

{Please note that all tables and figures have been placed in an Appendix at the end hopefully to make 

reading easier.  Text in Google blue color are links to reference technical papers or Excel spreadsheets 

and can be accessed from www.insitusoil.com}  

In many engineering disciplines, designs depend on a relatively narrow range of properties of “man-

made” products, while geotechnical engineers design measuring properties of soil or rock materials 

placed at the site by “mother-nature” that often vary significantly.  The geotechnical design engineer has 

traditionally used a factor of safety approach that incorrectly assumes that the soil/rock properties and 

the minimum design factor of safety values have constant values.  Because of uncertainty, the soil or 

rock properties do not have fixed values, but rather fall within a “bell-shaped” probability distribution of 

values.  Design uncertainties dictate the shape of this curve—low values have steep and and narrow 

curves, while large values have flat and wide curves and costs more to construct.  These uncertainties 

include 1) the natural or spatial variability of those properties throughout the site, 2) how well the 

engineer measures or knows what those values are, and 3) how well the design method predicts the 

outcome. 

The geotechnical engineer should choose the most accurate analytical model for his/her design to best 

predict the outcome or performance of the structure.  Less accurate tests with high uncertainty may 

falsely cause the design engineer to think that the site has more variability than it does.  Therefore, the 

geotechnical engineer must use tests that accurately measure the soil or rock properties to input into 

his/her numeric design model.  Failmezger and Bullock (2008) present guidelines, e.g., “Which in-situ 

test should I use—a designer’s guide.”   

Soil property correlations based on less accurate tests have an additional or fourth source and undesired 

layer of uncertainty.  To minimize this uncertainty, the engineer should compare values from the less 

accurate tests with values from the accurate tests and develop “site-specific” correlations.  How good 

are those correlations?  If the correlation poorly matches the accurate data, then its standard deviation 

will have large value, making the design standard deviation unnecessarily high.  In this case, the 

engineer may decide to discard the less accurate tests all together from the design analyses and simply 

base the design on the accurate tests. 

For example, the engineer may correlate the SPT N60 value, which ranges from 1 to 50 blows per foot, or 

CPT qt, which ranges from 1 to 500 tsf, with the deformation modulus from dilatometer or 

pressuremeter tests for design of settlement for shallow foundations.  (The SPT torque measurement 

has a resolution approximately 10 times N60, and thus can significantly improve SPT correlations.)  

Unfortunately, both the SPT and CPT strain the soil to failure, while the proposed structure strains the 

soil to an intermediate level, as do the dilatometer and pressuremeter.  Strain incompatibility may lead 

to high correlation error and uncertainty. 

Mathematicians have made probability analysis seem much more difficult than it is, regrettably causing 

engineers to shy away from using it for design.  Engineers only need to know that the area under any 

probability distribution curve must always equal 1.0.  Why?  There is 100% certainty that the value lies 

within this range, making its area equal to 100% or 1.0.  If one flips a coin, it will land as either a head or 

tail.  While one does not know whether it land as a head or tail, one of those two outcomes will occur.  

Similarly, if the weather prediction calls for 30% of rain, then it also calls for a 70% chance that it will not 



 

2 

rain.  But there is a 100% chance that it will either rain or not rain.  With engineering, a desirable 

outcome will occur at a certain percentage (probability of success) and one minus that percentage that 

an undesirable outcome will occur (probability of failure).  Failmezger (2018) discusses this topic further 

in his technical paper, Quantifying Geotechnical Probability of Failure—a Simpler Approach. 

Historically, geotechnical design has an average probability of success of about 95% (Harr, 1977 and 

Duncan, 2000).  With a probability analysis, the geotechnical engineer quantifies the owner’s desired 

probability of a successful outcome.  As the probability of success increases, the owner’s cost increases.  

The owner balances the initial construction cost with the potential repair cost.  For example, an owner 

building a warehouse may choose a probability of success of 90%, while an owner building a hospital 

may choose a probability of success of 99%.  

From a statistical viewpoint, soil/rock properties tend to follow the central limit theory of probability, 

where values cluster near their average forming a “bell-shaped” distribution.  Duncan (2000) suggests 

that the minimum or maximum values occur three (3) standard deviations from the average value.  As 

an estimate of standard deviation, Duncan further suggests for the engineer to determine the largest 

and smallest possible values of those properties and divide their difference by 6.  Wickremesinghe 

(1989) and Uzielli (2008) show methods to statistically analyze geotechnical data. 

Many researchers have suggested using either a “normal” or “log-normal” probability distribution 

because tables established more than 50 years ago provide numerical solutions.  Unfortunately, the 

“normal” distribution has end limits of negative infinity (-∞) to positive infinity (+∞) and the “log-

normal” distribution has end limits from just more than zero to positive infinity (+∞).  The computed 

area of the failure zone (between 0.01 and 0.1 for a probability of success equal to 99% and 90%, 

respectively) lies within one of the tails of the probability distribution curve and thus the end point 

becomes critical for this computation.  Both normal and log-normal distributions have non-

representative end limits for engineering design.   

Fortunately, the “beta” probability distribution has end limits that the engineer chooses and therefore 

best represents geotechnical engineering design as documented by Failmezger, Bullock and Handy 

(2004) – Site, variability and beta.  Using Excel with its built-in functions, the engineer can compute the 

beta probability distribution function.  The engineer can and should check the correctness of the 

equation by summing the area underneath the probability distribution curve using a numerical method 

such as the trapezoidal method.  This area must equal 1.000.  To solve the equation for the beta 

probability function, the engineer must evaluate and input the minimum end limit value, the maximum 

end limit value, the average value, and the standard deviation.   

The beta probability distribution function has the following equation: 
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  Γ = Gamma Function => Γ(N) = (N-1)! [Factorial]) 

Using Excel Γ(N) = EXP(GAMMALN(N+1)) 

The equation for the beta probability function can be simplified as: 

𝑓ሺ𝑥ሻ ൌ  𝐶ሺ𝑥 െ 𝑎ሻఈሺ𝑏 െ 𝑥ሻఉ  

 Where   𝐶ൌ  𝛤൫𝛼൅𝛽൅1൯

𝛤ሺ𝛼ሻ 𝛤൫𝛽൯൫𝑏െ𝑎൯൫𝛼൅𝛽൅1൯ 

Using the beta probability function, the engineer can solve: 

 factor of safety analyses,  

 driving forces/resisting forces analyses (pile capacity, tiebacks, slope stability, retaining walls), 

and  

 settlement or angular distortion analyses. 

Failmezger solved these problems using Excel spreadsheets and summed the area under the probability 

curves proving correctness (area = 1.00).  Figures 1-3 show those beta probability distribution functions.  

Summary graphs of these solutions let the design engineer more easily perform a probability analyses 

without necessarily solving the above equations. 

The engineer selects the average values and standard deviations for the geotechnical parameters for the 

design life of the project.  The input parameters in the probability analyses do not include time, and the 

probability of success represents time equal to the design life that the engineer/owner chooses. 

 

Factor of Safety Analyses  

Christian (1996) developed his point estimate method to analyze the factor of safety probability 

analyses.  For each geotechnical design parameter, the engineer selects either its average value plus one 

standard deviation or its average value minus one standard deviation.  The engineer then performs 2n 

analyses, where n = the number of parameters.  So, if the engineer has four parameters, he/she would 

run 24 or 16 analyses.  From this data set for factor of safety analyses, the engineer can determine the 

average and standard deviation.  With this analysis, the engineer can readily find which parameters have 

the most influence on the design. 

By assuming an average value of factor of safety and end limits three standard deviations away from the 

average, Failmezger, Bullock and Handy computed the standard deviation that gave probabilities of 
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success equal to 90, 95, 99, 99.9, 99.99 and 99.999%.  Interestingly, the average factor of safety versus 

standard deviation has a linear relationship for different probabilities of success.  Although Dr. Dick 

Handy told Roger Failmezger that some terms would cancel out when Failmezger tried to 

mathematically solve the problem at Dick’s breakfast table, he unfortunately ended up with a sixth 

order polynomial equation with all the terms.  While the engineer can solve for the probabilities of 

success of 99.9, 99.99, and 99.999%, he/she is likely “slicing the bologna simply too thin” as the 

geotechnical parameters for the analyses are not known that accurately.  After determining the average 

factor of safety and the standard deviation, the engineer can use the design chart shown as Figure 4 to 

determine its probability of success.  The engineer adjusts the design to get the desired probability of 

success that the owner selects. 

 

Driving Forces—Resisting Forces Analyses 

The engineer can design for slope stability, lateral and vertical capacity of deep foundations, tiebacks, 

and retaining walls using the driving forces/resisting forces analyses.  By assigning a value of 1.0 as the 

average value for the driving forces, the analyses simplify and become unitless.  The coefficient of 

variation equals the standard deviation divided by the average value.  By assuming a coefficient of 

variation of either 5, 10, 15 or 20% for the driving forces and an average value of either 1.2, 1.3, 1.4, 1.5, 

1.6, 1.8, 2.0, 2.5 or 3.0 for the resisting forces, Failmezger determined the coefficient of variation for the 

resisting forces to get a probability of success equal to either 90, 95, or 99%. 

By separating the driving and resisting forces, the engineer can often better estimate their coefficients 

of variation than the overall coefficient of variation for a factor of safety analyses that combines these 

forces.  For a slope stability problem, the engineer can perform his/her routine factor of safety analysis 

with computer software because the computed minimum factor of safety across the critical failure 

surface equals the average resisting force when assuming the average driving force equals 1.0.  Figures 

(5a-d) provide solutions for the probability of success, after the engineer chooses the appropriate 

coefficient of variation for driving forces chart and evaluates the average value and coefficient of 

variation for the resisting forces.  For example, if the COV for the driving forces = 5% and COV for the 

resisting forces = 15%, then the average resisting force or factor of safety would need to equal 1.4 for a 

probability of success = 90%, 1.5 for a probability of success = 95%, or 1.7 for a probability of success = 

99%. 

After communicating with the owner and other design team members, the geotechnical design engineer 

may know the desired probability of success for the project.  Figures 6a-c show the probability of 

success of 90, 95, and 99% for the driving forces—resisting forces analyses. 

 

Settlement—Angular Distortion Analyses 

For this analysis, the geotechnical design engineer determines the probability that the predicted 

settlement will be less than the chosen threshold total settlement or angular distortion for the 

structure.  The engineer should perform deformation tests for his/her settlement prediction method, 

such as flat dilatometer or pressuremeter tests (Figure 7).  Settlement predictions based on penetration 
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tests (SPT and CPT) that strain the soil to failure can have inaccurate and high standard deviation or 

coefficient of variation for useful probability analyses (Figure 8). 

Figure 9 shows the Beta probability distribution functions for settlement and angular distortion.  

Notably, when the standard deviation has a low value, the curves have a bell-shape and closer to the 

threshold value, while when the standard deviation has a high value and the minimum end limit 

becomes zero, the curves become skewed right then “reverse J-shaped” and farther from the threshold 

value. 

The property’s standard deviation represents uncertainty—low uncertainty has low standard deviations 

while high uncertainty has high standard deviations.  With accurate measurements, the probability 

distribution function for the soil or rock properties that are homogeneous becomes narrow and steep, 

because its values fall within the narrow band centered around its average value with low standard 

deviations and end limits close to the average value.  In this case the probability distribution curve is 

steep and narrow.  On the  

Foundation design minimizes the settlement difference between any two columns for the structure 
relative to the distance between them, or the angular distortion, to avoid unacceptable damage to the 
structure.  Table 1 shows limits of angular distortion for different types of structures and their uses.  The 
geotechnical engineer, the owner and structural engineer, working closely together, should choose the 
appropriate risk levels for the desired angular distortion of the structure. 
 
Figures 10a-e present design charts for total settlement and angular distortion of 1/150, 1/300, 1/500 

and 1/750 plotting their average value versus standard deviation to determine the design probability of 

success. 

  

Standard Deviation 

The standard deviation measures the design uncertainty.  When the engineer minimizes the standard 

deviation in his/her design, the solution results in a steep and narrow shaped probability distribution 

(blue) curve.  However, high standard deviation results in a short and wide shaped probability 

distribution (green) curve, as illustrated on Figure 11. 

When the engineer evaluates the standard deviation, he/she should consider three sources of 

uncertainty: 

1. the site or spatial variability of the soil/rock properties and foundation loads, 

2. the accuracy of the prediction method, which can be computed from case study databases, 

3. and engineering judgment to evaluate other intangible sources. 

 

If the engineer views these three sources of standard deviation as independent of each other, then the 

overall standard deviation equals: 

 

 𝜎௢௩௘௥௔௟௟ ൌ ට𝜎௦௣௔௧௜௔௟ି௦௜௧௘
                           ଶ ൅ 𝜎௧௘௦௧ି௠௘௧௛௢ௗ

                             ଶ ൅ 𝜎௘௡௚௜௡௘௘௥௜௡௚ ௝௨ௗ௚௠௘௡௧
                                                    ଶ  
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If the engineer correlates less accurate test data with accurate data, then the standard deviation from 

“site-specific” correlation contributes to the overall standard deviation as follows: 

 

 𝜎௢௩௘௥௔௟௟ ൌ ට𝜎௦௣௔௧௜௔௟ି௦௜௧௘
                           ଶ ൅ 𝜎௧௘௦௧ି௠௘௧௛௢ௗ

                             ଶ ൅ 𝜎௘௡௚௜௡௘௘௥௜௡௚ ௝௨ௗ௚௠௘௡௧
                                                    ଶ ൅  𝜎௖௢௥௥௘௟௔௧௜௢௡

                          ଶ 

 

The overall standard deviation will decrease if these sources of uncertainty have dependency with each 

other.  

 

Site/spatial variability: After a thorough subsurface investigation, the geotechnical engineer should 

assess the variability of soil/rock properties.  Are they homogeneous and therefore represented with a 

low standard deviation?  Or does the site have differing properties?  Are the column loads similar for the 

entire structure or do they differ?  Unfortunately too often, geotechnical engineers overly simply design 

and recommend a single allowable bearing capacity for all shallow spread footings to support the 

proposed structure.  Even if the soil has exactly the same deformation modulus for the entire site 

(perfectly homogeneous), different column loads will mathematically cause differential settlement.  

Smaller column loads have smaller stress bulbs, while larger column loads have larger stress bulbs.  For a 

constant deformation modulus of 100 bars, Failmezger shows in Figure 12 that larger stress bulbs result 

in larger settlements for the larger applied column loads. 

 

For the best performance of the structure, the geotechnical engineer designs each shallow spread 

footing to settle the same amount or each deep foundation pile or pier to support the same applied 

load.  To get the same settlement for spread footing design, the geotechnical engineer should use higher 

bearing pressures for smaller loads and lower bearing pressures for higher loads.  To achieve uniform 

settlement for the site using ground improvement to increase the deformation modulus, the soil should 

be improved more at the higher column loads and less at the lower column loads.  For deep 

foundations, the geotechnical engineer should compute the tip depth and number of piles or piers to 

provide the predicted capacity equal to the column load times the factor of safety.  For example, at a 

column instead of computing 8.2 piles and installing 9 piles, install 8 piles a foot or two deeper. 

 

Each test hole becomes a settlement or pile capacity prediction.  By plotting these points as a contour 

map of settlement for spread footings or tip depth for deep foundations, the engineer can visualize how 

the structure will perform.  Holes or hills on the contour map represent areas where there are 

insufficient data and more testing should be performed at the center of those uncertain zones.  

Failmezger and Bullock (2004) present guidance in their technical paper, Individual Foundation Design 

for Column Loads.  For columns that do not have a test hole at their location, the engineer can use a 

weighted average to predict the settlement of the spread footing at that column.  From the settlement 

predictions from three holes (A, B, and C) closest to that column, the geotechnical engineer computes 

the weighted average using the following formula: 
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 Where SettCol = the weighted average prediction for settlement at center of column 
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DistA = the distance from hole A to the center of column 

  SettA = the predicted settlement at hole A 

  𝑆𝑢𝑚 ቀ ଵ
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The holes closest to the column have more “weight” or influence on the settlement prediction of the 

column.  Similarly, the geotechnical engineer can predict the tip depth for the deep foundation at each 

column using the above weighted average formula. 

 

With this approach to design for the support of each column individually, the geotechnical engineer 

minimizes the uncertainty from the spatial variability of the soil/rock and loads.  Each prediction at a 

column becomes a data point in the set used to compute the average and standard deviation for the 

design.  To minimize the site’s spatial variability, the geotechnical engineer adjusts the design as the 

load and geotechnical properties change across the site. 

 

Failmezger and Niber (2006) present a case study using accurate dilatometer test data to predict 

settlement and probability analyses to design a shallow foundation system for a parking garage for 

Washington D.C. Metro Transportation Authority (WMATA).  WMATA, a conservative owner, accepted a 

shallow spread footing design that had a probability of success of 93% that footings would settle less 

than 1.0 inch.  WMATA saved a significant amount of money with this design and today the parking 

garage performs as desired.  The owner should always be involved in making risk decisions for the 

foundation design solution, as Failmezger and Bullock discuss in Owner Involvement--Choosing Risk 

Factors for Shallow Foundations. 

 

The geotechnical engineer can use histograms to visualize the variability and average value for soil/rock 

properties for each geologic formation.  Stark (2024) shows a histogram for liquid limit of a clay at a site 

on Figure 13.  If the engineer observes two distinct centers of data, then he/she should separate data 

into two different soil/rock layers in the analyses.  The standard deviation can be computed as dividing 

the difference between the maximum and minimum values by 6 as suggested by Duncan (2000). 

Design Method Variability:  How well does the design method predict the outcome?  Well documented 

case studies can give the engineer the coefficient of variability for the design method/outcome.  When 

Failmezger asked Dr. John Schmertmann about predictions, he emailed “I remember that MIT professor 

Bill Lambe was very interested in predictions and tried to put them in categories like A ---meant the 

predictor was completely unaware of the correct answer, and B – knew the answer, with various 

nuances in between”.  Briaud (2012) describes predictions as accurate meaning that the average 

prediction matches the average measurement and precise meaning that there is little scatter or low 

standard deviation in the prediction. 

From Schmertmann (1986) and Hayes (1986) data sets shown on Figure 7, settlement predictions for 

spread footings from dilatometer are both accurate and precise, having a low coefficient of variation of 

0.18.  For slope stability analyses, the Morganstern-Price 3-dimensional method has a closed form 

solution, minimizing its coefficient of variation.  From pile load tests, Robertson, et. al. (1988) shows that 

the LCPC method using CPT data has a coefficient of variation equal to 10% for driven steel pipe piles. 
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From performance monitoring during load tests at the site and regionally in a specific geologic 

formation, the geotechnical engineer can compute the coefficient of variation for the method.  To learn, 

the geotechnical engineer should always carry out pile load tests to failure.  From the instrumentation, 

such as strain-gauge sister bars, the engineer computes the ultimate resistance unit stresses for each 

stratum along the test pile. 

The geotechnical engineer can perform conical test load (Schmertmann 1996) or embankment load tests 

to improve/evaluate the settlement method prediction variability for the site.  The conical test load 

method places a cone shaped mound of gravel over the supporting soil, imposing the stress that the 

spread footing will apply.  Using settlement plates and stress cells, the engineer models how a spread 

footing will perform. 

He/she then adjusts the correlation coefficients for each stratum in the prediction method to match the 

load test.  Stark (2024) describes these adjustments as “anchoring the correlation”. 

Engineering judgment variability: 

Time and budget constraints may limit the design engineer from obtaining enough test data to 

accurately and precisely perform his/her design.  The design engineer may not have performance tests 

to improve the design.  The engineer may not observe the construction of the project to assure that it is 

built as designed.  Supporting footings on previously placed but undocumented fill represent high 

uncertainty.  Even with a significant number of test holes, soft, loose, debris, and organic material may 

not be discovered with the field explorations.  The seasoned engineer assesses these potential 

uncertainty sources and evaluates their impact for an unsatisfactory outcome. 

 

Choosing the Probability of Success 

The engineer must perform design services to meet the standard of care, i.e. the level of service 

provided by an average engineer in the geographical area at the time of service.  The engineer carries 

professional liability insurance that covers the risk only when his services do not satisfy the standard of 

care.  The geotechnical engineer includes a risk disclaimer flyer in his/her report trying to deflect 

responsibility if a performance failure occurs.  Juries for court cases tend to find the engineer at least 

partially responsible because “they said it would work” in their design report and it did not.  To protect 

themselves, today’s engineers tend to design overly conservatively and costly to the owner.   

Successful owners make money.  They maximize their profits by seeking a foundation design that safely 

supports their structure and costs the least to build.  They choose the probability of success that 

balances the risk of performance failure with the risk of financial failure.   

The engineer and owner must discuss risk.  With this approach, the owner chooses the risk for the 

project and the engineer quantifies and designs for the chosen desired risk or probability of success. 

To minimize his/her risks, the owner should select the engineer based on his/her qualifications rather 

than fees.  To minimize uncertainty and the design risks, the engineer accurately and thoroughly 

measures the soil/rock properties.  The resulting design curve becomes steep and narrow as depicted as 

the blue curve on Figure 14.  If the engineer does not make enough accurate measurements of the 

soil/rock properties, he/she cannot determine whether the resulting high uncertainty is attributed to 
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variability of the soil/rock properties or his/her lack of knowledge.  In this case, the resulting design 

curve becomes shallow and flat as depicted as the red curve.  Both curves represent a probability of 

success of 95%.  If the engineer’s design results in the red curve because of a lack of knowledge instead 

of the blue curve, then where the red curve exceeds the blue curve, that area computes as the 

probability of financial failure.  The wise owner would spend money on a more thorough soil property 

investigation and engineering design resulting in the low uncertainty (blue) curve design. 

High Risk—Non-Redundant Foundation Systems:  When foundation systems have a single drilled shaft 

supporting a column or the owner wishes to minimize all risks, Schmertmann and Schmertmann 

(father/son), 2012 developed the Testing and Remediation Observational Method (TROM).  With TROM, 

the engineer tests every foundation to ensure that it has the capacity to provide the support needed to 

carry the load.  When a tested foundation does not have enough capacity, then it is remediated until it 

has that capacity.  TROM successfully proved the adequacy for foundation system for the Los Angeles 

Football Stadium in 1995 and routinely verifies capacity for tieback support systems. 

The owner must decide what probability of success is best for his/her project.  Historically, the average 

probability of success is about 95% (Harr, 1977 and Duncan, 2000).  What is the cost to repair a 

performance failure?  If it is high, then the design should use a higher probability of success.  If it is low, 

then the design should use a lower probability of success.  For example, a crack in the foundation or slab 

in a warehouse, which may not be repaired, has less importance than a crack in a hospital that may 

require repair that is disruptive and costly.  Repair in an urban setting may cost significantly more to fix 

than a repair in a rural setting.  The higher the probability of success is, the more costly the structure is 

to build.  The owner considers the above factors and decides what probability of success best suits 

him/her. 

With the design method quantifying risk, the owner benefits from: 

1. An accurate design solution that matches his/her desired risk rather than a risk that protects the 

engineer’s liability, 

2. Columns that settle the same predicted amount, which reduces the potential for cracking by 

minimizing differential settlement or angular distortion, and 

3. Reduction in legal disputes. 

With the design method quantifying risk, the engineer benefits from: 

1. Reduced liability risks, 

2. Increased fees from performing a more complete and detailed design 

3. Personal satisfaction from providing high quality design for the owner, and 

4. Reduction in legal disputes. 

Nadir Ansari, a professional engineer that specializes in braced excavation and shoring design in 

Toronto, states that for projects in Canada they form a partnership between the owner, engineer and 

contractor.  With accurate soil/rock property measurements and detailed engineering finite element 

analyses, they design a safe working solution without excess.  They then monitor movement of the 

shoring.  If they discover an area that moves more than desired, then the contractor installs additional 

tiebacks to stabilize this area.  The owner pays the contractor for these additional tiebacks.  The owner 

greatly benefits financially from this partnership, as he/she only pays for tiebacks that were required. 
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Failmezger (2021) explains further the additional cost that the owner will have if the geotechnical 

engineer does not design based on thorough knowledge of the soil or rock properties at the site in his 

technical paper, “Financial Failure—The High Cost of Not Knowing”.  Brumund (2011) discusses business 

risks for geotechnical engineering firms. 
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Figures and Tables 

 

  

 

Figure 1: Beta Probability Distribution Functions for Probability of Success = 95% 
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Figure 2a: Beta Distribution Curves with Driving Forces Curve with Standard Deviation of 0.1 
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Figure 2b: Beta Distribution Curves with Driving Forces Curve with Standard Deviation of 0.2 



 

14 

 

 

  

 

Figure 3a: Beta Probability Distribution Curves for Total Settlement 
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Figure 3b: Beta Probability Distribution Curves for Angular Distortion = 1/150 
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Figure 3c: Beta Probability Distribution Curves for Angular Distortion = 1/300 
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Figure 3d: Beta Probability Distribution Curves for Angular Distortion = 1/500 
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Figure 3e: Beta Probability Distribution Curves for Angular Distortion = 1/750 
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Figure 4: Design Chart for Factor of Safety with end limits = average + 3 standard deviations 
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Figure 5a: Design Chart for Driving Forces with a Coefficient of Variation = 5% 
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Figure 5b: Design Chart for Driving Forces with a Coefficient of Variation = 10% 
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Figure 5c: Design Chart for Driving Forces with a Coefficient of Variation = 15% 
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Figure 5d: Design Chart for Driving Forces with a Coefficient of Variation = 20% 
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Figure 6a: Design Chart for Driving Forces—Resisting Forces for Probability of Success = 90% 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

ResisƟng Forces or Factor of Safety

0

5

10

15

20

25

30

35

40

45

50

R
es

is
Ɵ

n
g 

Fo
rc

es
 C

o
effi

ci
en

t 
o

f 
V

ar
ia
Ɵ

o
n

 (
%

)

Driving Forces COV=5%

Driving Forces COV=10%

Driving Forces COV=15%

Driving Forces COV=20%

Probability of Success of 90% for Slope Stability



 

25 

  

 

Figure 6b: Design Chart for Driving Forces—Resisting Forces for Probability of Success = 95% 
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Figure 6c: Design Chart for Driving Forces—Resisting Forces for Probability of Success = 99% 
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Figure 7: Dilatometer tests to predict settlement (COV of method = 0.18) 
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Figure 8a: Settlement predictions from SPT in Sand (COV of method = 0.67)  

 

Figure 8b: Variability of CPT  factor for deformation modulus prediction 
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Figure 9a: Total Settlement 
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Figure 9b: Angular Distortion = 1/300 
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Table 1  Allowable Angular Distortion 
 

 
 

Situation 

Allowable 
Angular 

Distortion 

Machinery sensitive to settlement 1/750 

No cracking in buildings; tilt of bridge abutments; tall slender structures such as 
stacks, silos, and water tanks on a rigid mat; steel or reinforced concrete frame 
with brick block, plaster or stucco finish and length to height ratio greater than 
5 

1/500 

Cracking in panel walls; problems with overhead cranes 1/300 

Structural damage in buildings; flexible brick walls with length to height ratio 
greater than 4 

1/150 
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Figure 10a: Design Chart for Probability of Success for Total Settlement 
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Figure 10b: Design Chart for Probability of Success for 1/150 Angular Distortion 
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Figure 10c: Design Chart for Probability of Success for 1/300 Angular Distortion 
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Figure 10d: Design Chart for Probability of Success for 1/500 Angular Distortion 
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Figure 10e: Design Chart for Probability of Success for 1/750 Angular Distortion 
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Figure 11: Blue curve => low uncertainty 

Green curve => high uncertainty 
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Figure 12: Different column loads cause different settlement even for a perfectly homogeneous soil 
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Figure 13: Histogram of liquid limit 
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Figure 14: Financial Failure from Poor Quality Data 


